Abstract

Silicosis is an incurable lung disease that can progress even when exposure to silica dust has ended. Lipid metabolism plays an important role in the occurrence and development of silicosis. However, the mechanistic details have not been fully elucidated. This was investigated in the current study by high-performance liquid chromatography-mass spectrometry-based lipidomic analysis of lung tissue in a mouse model of silicosis. Lipid profiles and key metabolic enzymes were compared between silica and control groups. The lipidomic analysis revealed differentially-expressed lipids in the lungs of silicosis mice compared with controls. Among the identified lipid metabolism-related enzymes, the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1) was significantly down-regulated at the transcript and protein levels. LPCAT1 overexpression in vivo using adeno-associated virus altered the balance between phosphatidylcholine and lysophosphatidylcholine and inhibited the development of silicosis in mice. These results indicate that LPCAT1 dysregulation leads to abnormal lipid metabolism and silicosis, and is a potential therapeutic target for the treatment of silica-induced pulmonary fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.