Abstract

In mammals, cumulus expansion due to increased synthesis of hyaluronan was suggested to correlate with modification of the gap junction between cumulus cells and the oocyte, leading to cumulus expansion. We examined whether lysophosphatidic acid, a lipid mediator detected in mammalian body fluids, stimulates significant production of hyaluronan and thus affects mouse cumulus expansion in vitro. Cumulus-oocyte complexes isolated from the gonadotropin-treated ovaries of B6C3F1 mice were exposed to lysophosphatidic acid in the presence and absence of 0.3 % fetal bovine serum for measurement of cumulus expansion and released hyaluronan, respectively. Exogenously added lysophosphatidic acid concentration-dependently stimulated production of hyaluronan in the cumulus cell-oocyte complex, and the stimulatory effect of lysophosphatidic acid on hyaluronan production was mediated through the signal pathways, including LPA receptor-Gi coupling, EGF receptor transactivation, and activations of phosphatidylinositol-specific phospholipase C, protein kinase C and mitogen-activated protein kinases. LPA increased mRNA expression of tumor necrosis α-induced protein 6, a hyaluronan-binding protein, and expansion of cumulus cell-oocyte complex. Lysophosphatidic acid in follicular fluids may participate in physiological cumulus expansion before ovulation by stimulating production of hyaluronan and proteins that enable the association of hyaluronan with cumulus cells and oocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.