Abstract

Lysophosphatidic acid (LPA) via transactivation dependent signalling pathways contributes to a plethora of physiological and pathophysiological responses. In the vasculature, hyperelongation of glycosaminoglycan (GAG) chains on proteoglycans leads to lipid retention in the intima resulting in the early pathogenesis of atherosclerosis. Therefore, we investigated and defined the contribution of transactivation dependent signalling in LPA mediated GAG chain hyperelongation in human vascular smooth muscle cells (VSMCs).LPA acting via the LPA receptor 5 (LPAR5) transactivates the TGFBR1 to stimulate the mRNA expression of GAG initiation and elongation genes xylosyltransferase-1 (XYLT1) and chondroitin 6-sulfotransferase-1 (CHST3), respectively. We found that LPA stimulates ROS and Akt signalling in VSMCs, however they are not associated in LPAR5 transactivation of the TGFBR1. We observed that LPA via ROCK dependent pathways transactivates the TGFBR1 to stimulate genes associated with GAG chain elongation. We demonstrate that GPCR transactivation of the TGFBR1 occurs via a universal biochemical mechanism and the identified effectors represent potential therapeutic targets to inhibit pathophysiological effects of GPCR transactivation of the TGFBR1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.