Abstract

The lipoprotein lipase (LPL)-augmenting property of lysophosphatidylcholine requires the formation of lysophosphatidic acid (LPA) (J Mol Cell Cardiol 37: 931-938, 2004). Given that the actin cytoskeleton has been implicated in regulating cardiomyocyte LPL, we examined whether LPL secretion after LPA involves actin cytoskeleton reassembly. Incubation of myocytes with LPA (1-100 nM) increased basal and heparin-releasable LPL (HR-LPL), an effect that was independent of shifts in LPL mRNA. The influence of LPA on myocyte LPL was reflected at the coronary lumen, with substantial increases of the enzyme at this location. Incubation of myocytes with cytochalasin D not only blocked LPA-induced augmentation of HR-LPL but also abrogated filamentous actin formation. These effects of LPA were likely receptor mediated. Exposure of myocytes to LPA facilitated significant membrane translocation of RhoA and its downstream effector Rho kinase I (ROCK I), and blocking this effect with Y-27632 appreciably reduced basal and HR-LPL activity. Incubation of adipose tissue with LPA also significantly enhanced basal and HR-LPL activity, suggesting that sarcomeric actin likely has a limited role in influencing the LPL secretory function of LPA in the myocyte. Comparable to LPA, hyperglycemia also caused significant membrane translocation of RhoA and ROCK I in hearts isolated from diazoxide-treated animals, effects that were abrogated using insulin. Overall, our data suggest that comparable to hyperglycemia, LPA-induced increases in cardiac LPL occurred via posttranscriptional mechanisms and processes that likely required RhoA activation and actin polymerization. Whether this increase in LPL augments triglyceride deposition in the heart leading to eventual impairment in contractile function is currently unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.