Abstract

Lysophosphatidic acid (LPA) is a glycerophospholipid released from platelets that has multiple biologic effects. The present study evaluated the potential of LPA to modulate tissue repair and remodeling by modifying human lung fibro-blast-mediated contraction of three-dimensional collagen gels. The contraction of native collagen gels caused by human fetal lung fibroblasts was augmented by LPA in a concentration-dependent manner. The estimated median effective concentration was 3 × 10−7 mol/L, which was well below the concentrations likely released by platelets in tissues. LPA-augmented contraction was not blocked by pertussis toxin or cholera toxin but was inhibited by inhibition of phospholipase C. Neither calcium mobilization nor protein kinase C appeared to play a role. In contrast, the effect of LPA appeared to depend on a kinase inhibited by staurosporine but not by genistein or GF109203X, suggesting a process that depends on phospholipase C and may involve a novel protein kinase. By modulating fibroblast-mediated remodeling, LPA could play a role in the tissue remodeling that characterizes wound repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.