Abstract

BackgroundInterest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy.ResultsWe developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat) gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80). Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection.ConclusionsA recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host. The recombinant phage effectively rescued mice from fatal S. aureus infection. To our knowledge this is the first report of a lysis-deficient staphylococcal phage.

Highlights

  • Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens

  • When we assessed the prophage induction pattern and phage progeny release of parent and endolysin-deficient phage P954 lysogens, we found that the absorbance of the culture remained unaltered and the extracellular phage titer was minimal with the recombinant phage lysogen

  • We developed a modified bacteriophage against S. aureus by insertional inactivation of its endolysin gene, which renders it incapable of host cell lysis

Read more

Summary

Introduction

Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. The use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. The development of phages for therapy has been hampered by concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty of dose determination in clinical situations [5]. An undesirable side effect of this phenomenon from a therapeutic perspective is the development of immunogenic reactions due to large uncontrolled amounts of phages in circulation [9] Such concerns must be addressed before phage therapy can be widely accepted [5,10]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.