Abstract

5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to form CoA, carbon dioxide, and 5-aminolevulinate. This represents the first committed step of heme biosynthesis in animals and some bacteria. Lysine 313 (K313) of mature murine erythroid 5-aminolevulinate synthase forms a Schiff base linkage to the pyridoxal 5‘-phosphate cofactor. In the presence of glycine and succinyl-CoA, a quinonoid intermediate absorption is transiently observed in the visible spectrum of purified murine erythroid ALAS. Mutant enzymes with K313 replaced by glycine, histidine, or arginine exhibit no spectral evidence of quinonoid intermediate formation in the presence of glycine and succinyl-CoA. The wild-type 5-aminolevulinate synthase additionally forms a stable quinonoid intermediate in the presence of the product, 5-aminolevulinate. Only conservative mutation of K313 to histidine or arginine produces a variant that forms a quinonoid intermediate with 5-aminolevulinate. The quinonoid intermediate ab...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.