Abstract

Recombinant lysine:N6-hydroxylase, rIucD, which is isolated as an apoenzyme, requires FAD and NADPH for its catalytic function. rIucD preparations have been found to undergo time-dependent loss in monooxygenase function due to aggregation from the initial tetrameric state to a polytetrameric form(s), a process which is reversible by treatment with thiols. Ligand-induced conformational changes in rIucD were assessed by monitoring its CD spectra, DSC profile, and susceptibility to both endo- as well as exopeptidases. The first two methods indicated the absence of any significant conformational change in rIucD, while the last approach revealed that FAD, and its analog ADP, can protect the protein from the deleterious action of proteases. NADPH was partially effective and L-lysine was ineffective in this regard. Deletion of the C-terminal segment, either by treatment with carboxypeptidase Y or by mutagenesis of iucD, results in the loss of rIucD's monooxygenase activity. These findings demonstrate the crucial role of the C-terminal segment in maintaining rIucD in its native conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.