Abstract

TEAD transcription factors are responsible for the transcriptional output of Hippo signaling. TEAD activity is primarily regulated by phosphorylation of its coactivators, YAP and TAZ. In addition, cysteine palmitoylation has recently been shown to regulate TEAD activity. Here, we report lysine long-chain fatty acylation as a posttranslational modification of TEADs. Lysine fatty acylation occurs spontaneously via intramolecular transfer of acyl groups from the proximal acylated cysteine residue. Lysine fatty acylation, like cysteine palmitoylation, contributes to the transcriptional activity of TEADs by enhancing the interaction with YAP and TAZ, but it is more stable than cysteine acylation, suggesting that the lysine fatty-acylated TEAD acts as a "stable active form." Significantly, lysine fatty acylation of TEAD increased upon Hippo signaling activation despite a decrease in cysteine acylation. Our results provide insight into the role of fatty-acyl modifications in the regulation of TEAD activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.