Abstract

Many methanogenic archaea synthesize β-amino acids as osmolytes that allow survival in high salinity environments. Here, we investigated the radical S-adenosylmethionine (SAM) aminomutases involved in the biosynthesis of Nε-acetyl-β-lysine and β-glutamate in Methanococcus maripaludis C7. Lysine 2,3-aminomutase (KAM), encoded by MmarC7_0106, was overexpressed and purified from Escherichia coli, followed by biochemical characterization. In the presence of l-lysine, SAM, and dithionite, this archaeal KAM had a kcat = 14.3 s-1 and a Km = 19.2 mM. The product was shown to be 3(S)-β-lysine, which is like the well-characterized Clostridium KAM as opposed to the E. coli KAM that produces 3(R)-β-lysine. We further describe the function of MmarC7_1783, a putative radical SAM aminomutase with a ∼160 amino acid extension at its N-terminus. Bioinformatic analysis of the possible substrate-binding residues suggested a function as glutamate 2,3-aminomutase, which was confirmed here through heterologous expression in a methanogen followed by detection of β-glutamate in cell extracts. β-Glutamate has been known to serve as an osmolyte in select methanogens for a long time, but its biosynthetic origin remained unknown until now. Thus, this study defines the biosynthetic routes for β-lysine and β-glutamate in M. maripaludis and expands the importance and diversity of radical SAM enzymes in all domains of life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.