Abstract

Lysenin, a hemolytic protein derived from the body fluid of earthworm, was incorporated into artificial bilayer membranes. Upon insertion, it formed a voltage-dependent large conductance channel in asolectin bilayers in a sphingomyelin-dependent manner. The channel had low ion-selectivity. Single-channel conductance was calculated as approximately 550 pS in 100 mM KCl. The channel in asolectin bilayers closed when the membrane was held at a positive potential. In contrast, the channel showed no voltage dependency in membranes made of pure phosphatidylcholine and sphingomyelin, suggesting some lipid contents included in the asolectin membranes affected channel gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.