Abstract

Although eosin-5-maleimide (EM) covalently labels band 3 and has been thought to react at the external-facing anion transport site, EM reversibly inhibits Cl- exchange at 0 degrees C in a noncompetitive fashion, indicating that under these conditions it does not bind to the transport site [Knauf, P.A., N.M. Strong, J. Penikas, R.B. Wheeler, Jr., and S.J. Liu. Am. J. Physiol. 264 (Cell Physiol. 33): C1144-C1154 1993]. To see whether or not the covalent labeling by EM takes place at the same noncompetitive site as the reversible binding, we examined the dependence of reaction rate on EM concentration. The reaction rate saturates with increasing EM concentration, indicating that reversible binding precedes covalent reaction and that EM therefore acts as an affinity label. A more complex model in which reversible binding prevents a bimolecular reaction at a different site cannot, however, be ruled out. Cl- gradients across the membrane affect EM reversible binding in a manner suggesting that EM binds preferentially to the Eo form of band 3, with the transport site unloaded and facing outward. Thus EM binds to and probably reacts covalently with a site that is different from the transport site, but whose conformation is affected by the orientation of the transport site. Lysine-430, the amino acid residue which is covalently labeled by EM (4), may be near the transport site but does not seem to be directly involved in the binding of transported substrates such as chloride. EM binding to one band 3 monomer decreases the reactivity of the adjacent monomer but does not decrease the affinity constant of the reversible binding step that precedes covalent reaction. Although a small fraction (approximately 1%) of band 3 monomers fail to react with EM, EM nearly completely inhibits transport in those monomers with which it reacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call