Abstract
Abstract We introduce the LYRA project, a new high resolution galaxy formation model built within the framework of the cosmological hydro-dynamical moving mesh code arepo. The model resolves the multi-phase interstellar medium down to 10 K. It forms individual stars sampled from the initial mass function (IMF), and tracks their lifetimes and death pathways individually. Single supernova (SN) blast waves with variable energy are followed within the hydrodynamic calculation to interact with the surrounding interstellar medium (ISM). In this paper, we present the methods and apply the model to a 1010 M⊙ isolated halo. We demonstrate that the majority of supernovae are Sedov-resolved at our fiducial gas mass resolution of 4 M⊙. We show that our SN feedback prescription self-consistently produces a hot phase within the ISM that drives significant outflows, reduces the gas density and suppresses star formation. Clustered SN play a major role in enhancing the effectiveness of feedback, because the majority of explosions occur in low density material. Accounting for variable SN energy allows the feedback to respond directly to stellar evolution. We show that the ISM is sensitive to the spatially distributed energy deposition. It strongly affects the outflow behaviour, reducing the mass loading by a factor of 2 − 3, thus allowing the galaxy to retain a higher fraction of mass and metals. LYRA makes it possible to use a comprehensive multi-physics ISM model directly in cosmological (zoom) simulations of dwarf and higher mass galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.