Abstract

The 1D structure of single-walled carbon nanotubes (SWNTs) leads to unique physical properties, which have been investigated extensively. Numerous applications and device prototypes have been demonstrated; however, most have used SWNTs grown in situ by chemical vapor deposition. This limits throughput and choice of substrate owing to the high growth temperatures involved. Solution-based postsynthesis device fabrication, typically involving purification, solubilization, chemical functionalization, cutting, and/ or controlled assembly of SWNTs, is more desirable because of low cost, scalability to large areas, and compatibility with flexible plastic substrates. Unfortunately, SWNTs are not readily soluble, and chemical functionalization strategies for their solubilization usually alter their electronic properties. Furthermore, to take full advantage of the anisotropic charge-transport properties of SWNTs and to enhance their performance in high-strength composite materials, it is necessary to align them over a large area. Noncovalent functionalization of SWNTs is a particularly attractive avenue for dispersion because it enables modification of material properties without altering the chemical structure of the nanotubes. To date, most high-concentration dispersions (>1mg mL ) have been obtained in aqueous solutions by mixing SWNTs with surfactants, doubleor

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.