Abstract

The obstacles in translating liposome formulations into marketable products could be attributed to their physical instabilities upon long-term storage as aqueous dispersions. Lyophilization is the most commonly used technique to improve physical stability of liposomes. The development of stable, lyophilized liposomes is focused primarily on the cholesterol-containing liposomes or pure phosphatidylcholine-based liposomes, with minimal studies on cholesterol-free, pegylated (CF-PEG) liposomes which have emerged as an important class of liposome drug carriers. Hence, it is our interest to investigate the effect of lyophilization on CF-PEG liposomes, and specifically, on drug loading via the passive equilibration method. Three different sugar cryoprotectants were used at two different sugar-to-lipid molar ratios (S/L). Our results demonstrated that CF-PEG liposomes lyophilized with sucrose at S/L=5:1 yielded the best cryoprotective effect, as characterized by size, polydispersity indices, and microscopic examination upon liposome reconstitution. The lyophilized liposomes had low water content of 2.59±0.18%. Of note, lyophilized CF-PEG liposomes exhibited two-fold increase in drug content when carboplatin was loaded via the passive equilibration method, and the in vitro drug release profile of these liposomes were not different from that of the non-lyophilized counterparts. Taken together, we envisioned that a stable, lyophilized empty CF-PEG liposome system could be coupled to hydrophilic drug loading via the passive equilibration method to produce a liposomal drug kit product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call