Abstract

We studied the effect of lyophilization of chicken breast muscle on the formation of dialyzable iron from ferric iron. Chicken breast muscle was used chilled, frozen or lyophilized and was analyzed for sulfhydryl and histidine content. It was then homogenized and mixed with ferric iron. The mixture was extracted with acid or digested with pepsin and pancreatin. The extracts and digests were analyzed for dialyzable ferrous and dialyzable total iron and also for protein. In the chilled muscle, similar amounts of dialyzable iron were formed after acid extraction and after proteolytic digestion; however, digestion led to more dialyzable ferrous iron. Freezing had no effect but lyophilization of the homogenized muscle caused large decreases in dialyzable iron and dialyzable ferrous iron for both extraction and digestion processes. Lyophilization also resulted in decreased extraction of peptides, decreased digestion of muscle proteins and reduced levels of sulfhydryl and histidine residues. Our results demonstrate that dialyzable iron is produced both by acid-soluble low molecular weight muscle component(s) and also by peptides resulting from digestion of muscle proteins: both of which reduce and chelate iron. Reduced formation of dialyzable iron by both mechanisms following lyophilization could be explained by sulfhydryl oxidation and impaired digestion due to protein crosslinking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call