Abstract

We previously demonstrated that L-selectin (CD62L)-dependent T cell homing to lymph nodes (LN) is required for tolerance induction to alloantigen. To explore the mechanisms of this observation, we analyzed the development and distribution of regulatory T cells (Treg), which play an important protective role against allograft rejection in transplantation tolerance. Alloantigen-specific tolerance was induced using either anti-CD2 plus anti-CD3 mAbs, or anti-CD40L mAbs plus donor-specific transfusion, in fully mismatched (BALB/c donor, C57BL/6 recipient) vascularized cardiac allografts. An expansion of CD4(+)CD25(+)CD62L(high) T cells was observed specifically within the LN of tolerant animals, but not in other anatomic sites or under nontolerizing conditions. These cells exhibited a substantial up-regulation of Foxp3 expression as measured by real-time PCR and by fluorescent immunohistochemistry, and possessed alloantigen-specific suppressor activity. Neither LN nor other lymphoid cells expressed the regulatory phenotype if recipients were treated with anti-CD62L mAbs, which both prevented LN homing and caused early allograft rejection. However, administration of FTY720, a sphingosine 1-phosphate receptor modulator that induces CD62L-independent T cell accumulation in the LNs, restored CD4(+)CD25(+) Treg in the LNs along with graft survival. These data suggest that alloantigen-specific Foxp3(+)CD4(+)CD25(+) Treg develop and are required within the LNs during tolerization, and provide compelling evidence that distinct lymphoid compartments play critical roles in transplantation tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.