Abstract

BackgroundTick-borne diseases, particularly Lyme disease, are emerging across the northern hemisphere. In order to manage emerging diseases and predict where emergence will likely occur, it is necessary to understand the factors influencing the distribution, abundance and infection prevalence of vector species. In North America, Lyme disease is the most common vector-borne disease and is transmitted by blacklegged ticks. This study aimed to explore the abiotic and environmental drivers of density and infection prevalence of western blacklegged ticks (Ixodes pacificus) in southern California, an understudied and densely populated region of North America.ResultsOver the course of this two-year study, densities of I. pacificus adults were consistently positively associated with host availability for juvenile ticks and dense oak woodland habitat. Densities of nymphal and larval I. pacificus, on the other hand were primarily predicted by host availability for juvenile ticks in the first year of the study, and by habitat characteristics such as dense leaf litter in the second year. Infection with the causative agent of Lyme disease, Borrelia burgdorferi (sensu stricto), and related spirochetes was not predicted by the abiotic conditions promoting I. pacificus populations, but rather by diversity of the tick community, and in particular by the presence of two Ixodes tick species that do not generally feed on humans (Ixodes spinipalpis and Ixodes peromysci). Borrelia spp. infection was not detected in the I. pacificus populations sampled, but was detected in other vector species that may maintain enzootic transmission of the pathogen on the landscape.ConclusionsThis study identified dense oak woodlands as high-risk habitats for I. pacificus tick encounter in southern California. The shift in relative importance of host availability to habitat characteristics in predicting juvenile tick abundance occurred as California’s historic drought intensified, suggesting that habitat providing suitable microclimates for tick survivorship became centrally important to patterns of abundance in the face of deleterious abiotic conditions. These results underscore the need for further investigation of the effects of climate change on tick-borne disease in California. Finally, despite low risk of human Lyme disease infection posed by I. pacificus in southern California, evidence of infection was found in other tick species, suggesting that enzootic transmission of tick-borne borreliae may be occurring in southern California, and involve parallel enzootic cycles with other tick and host species but not necessarily humans.

Highlights

  • Tick-borne diseases, Lyme disease, are emerging across the northern hemisphere

  • Despite low risk of human Lyme disease infection posed by I. pacificus in southern California, evidence of infection was found in other tick species, suggesting that enzootic transmission of tick-borne borreliae may be occurring in southern California, and involve parallel enzootic cycles with other tick and host species but not necessarily humans

  • Results were remarkably consistent between models predicting peak and average density of adult, nymphal and larval I. pacificus within a given year, due to significant positive correlation between these two measures, so multivariate Partial least squares regression (PLSR) models were run with both peak and average tick density as outcome variables in the same model

Read more

Summary

Introduction

Tick-borne diseases, Lyme disease, are emerging across the northern hemisphere. Strategies for disease control involving environmental management or land use planning [5, 6] may be increasingly important due to development of resistance to insecticides in vector populations and the challenges associated with managing enzootic transmission cycles [7, 8]. Such management strategies require an understanding of the abiotic and environmental conditions that promote both vector populations and elevated infection prevalence with zoonotic pathogens on the landscape

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.