Abstract

Population III stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby halos, and even if their ionizing photons are trapped by their own halos, their Lyman-Werner (LW) photons can still escape and destroy H$_2$ in other halos, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic halos by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9--120 M$_{\odot}$ Pop III stars in $10^5$ to $10^7$ M$_{\odot}$ halos with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H$_{2}$ in nearby systems) have escape fractions ranging from 0% to 85%. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18--13.6~eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60% for all but the least massive stars in the most massive halos. We find that shielding of H$_2$ by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of three smaller than those predicted by H$_2$ self-shielding alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.