Abstract

We study the evolution of Lyman Break Galaxies (LBGs) from z=5 to z=0 by tracing the merger trees of galaxies in a large-scale hydrodynamic simulation based on a Lambda cold dark matter model. In particular, we emphasize on the range of properties of the sample selected by the rest-frame V band luminosity, in accordance with recent near-IR observations. The predicted rest-frame V band luminosity function agrees well with the observed one when dust extinction is taken into account. The stellar content and the star formation histories of LBGs are also studied. We find that the LBGs intrinsically brighter than Mv=-21.0 at z=3 have stellar masses of at least 10^9\Msun, with a median of 10^{10}h^{-1}\Msun. The brightest LBGs (Mv<-23) at z=3 merge into clusters/groups of galaxies at z=0, as suggested from clustering studies of LBGs. Roughly one half of the galaxies with -23<Mv<-22 at z=3 fall into groups/clusters, and the other half become typical L* galaxies at z=0 with stellar mass of ~10^{11}\Msun. Descendants of LBGs at the present epoch have formed roughly 30% of their stellar mass by z=3, and the half of their current stellar population is 10 Gyr old, favoring the scenario that LBGs are the precursors of the present day spheroids. We find that the most luminous LBGs have experienced a starburst within 500 Myr prior to z=3, but also have formed stars continuously over a period of 1 Gyr prior to z=3 when all the star formation in progenitors is coadded. We also study the evolution of the mean stellar metallicity distribution of galaxies, and find that the entire distribution shifts to lower metallicity at higher redshift. The observed sub-solar metallicity of LBGs at z=3 is naturally predicted in our simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call