Abstract

We introduce a performance-optimized method to simulate localization problems on bipartite tight-binding lattices. It combines an exact renormalization group step to reduce the sparseness of the original problem with the recursive Green’s function method. We apply this framework to investigate the critical behavior of the integer quantum Hall transition of a tight-binding Hamiltonian defined on a simple square lattice. In addition, we employ an improved scaling analysis that includes two irrelevant exponents to characterize the shift of the critical energy as well as the corrections to the dimensionless Lyapunov exponent. We compare our findings with the results of a conventional implementation of the recursive Green’s function method, and we put them into broader perspective in view of recent development in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call