Abstract

Lycopene has been reported to exert a protective effect on the brain against transient ischemia‑induced damage; however, whether it could regulate autophagic neuronal death remains elusive. The present study aimed to investigate the role of autophagy in the protective effects of lycopene against neuronal damage and its underlying mechanism. Oxygen‑glucose deprivation (OGD) was used to simulate neuronal ischemic injury in human SH‑SY5Y cells. Lactate dehydrogenase (LDH) release assay revealed that OGD induced SH‑SY5Y cell death. Western blotting demonstrated that OGD upregulated the expression levels of the autophagy marker proteins autophagy protein5(ATG5) and LC3II, but downregulated the autophagy substrate p62 in a time‑dependent manner. By contrast, OGD‑induced cell death was significantly inhibited by the autophagy inhibitors 3‑methyladenine or bafilomycin A1 or by knockdown of ATG5, indicating that OGD may induce autophagic death in SH‑SY5Y cells. Notably, lycopene was shown not only to prevent OGD‑induced SH‑SY5Y cell death, but was also able to effectively inhibit OGD‑induced upregulation of ATG5 and LC3II, and downregulation of p62 in a dose‑dependent manner. Mechanistically, it was suggested that lycopene inhibited OGD‑induced activation of the AMPK/mTOR pathway via attenuation of oxidative stress by maintaining the intracellular antioxidant glutathione (GSH). Furthermore, the inhibitory role of lycopene in GSH depletion was found to be associated with the prevention of OGD‑induced depletion of intracellular cysteine and downregulation of xCT. Collectively, the present study demonstrated that lycopene protected SH‑SY5Y cells against OGD‑induced autophagic death by inhibiting oxidative stress‑dependent activation of the AMPK/mTOR pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.