Abstract

Atrazine (ATR) is a commercially available herbicide that is used worldwide. The intensive use of ATR poses potential risks to animals' and humans' health. Lycopene (LYC) is an anti-oxidative phytochemical that normalizes health hazards triggered by environmental factors. In this study, we aimed to investigate the toxic effects of ATR on the hippocampus and its amelioration by LYC. Male mice were exposed to ATR (50mg/kg/day or 200mg/kg/d) and/or LYC (5mg/kg/d) for 21 days. The results showed that ATR exposure induced hippocampus-dependent learning and memory impairments. ATR-induced ferroptosis in hippocampal cells affects the homeostasis of lipid metabolism, whereas LYC ameliorates the neurotoxic effects of ATR in the hippocampus. LYC inhibited ATR-induced ferroptosis by increasing the expression of HO-1, Nrf2 and SLC7A11. Therefore, this study established that LYC ameliorates ATR-induced spatial learning and memory impairments by inhibiting ferroptosis in the hippocampus and also provides a novel approach for the treatment in contradiction of environmental pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.