Abstract

Pickering emulsion has great potential as a vaccine adjuvant due to its unique advantages such as its high antigen loading efficiency, great stability, etc. Among several adjuvants on the market, aluminum adjuvant (Alum) is the most widely used at present. However, problems such as the inability to effectively induce cellular immunity and the poor effect on subunit vaccines limit the application of Alum. As an immunopotentiator, Lycium barbarum polysaccharides (LBP) have been proven to have the ability to regulate humoral and cellular immunity. To overcome the insufficiency of Alum, we explored a new adjuvant delivery system. The Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion (LBPPE) was prepared by loading Alum on the squalene/water interphase following LBP was adsorbed on the Alum surface (Fig. 10). Similar to squalene, LBPPE possesses a good biosafety profile. LBPPE was spherical with uneven surface, which increased the possibility of efficient antigen adsorption on the surface and crack of LBPPE. And the result shown that the LBPPE had high antigen loading rate at approximately 90 %. In vivo experiments, LBPPE showed an excellent ability to recruit antigen-presenting cells (APCs) at the injection sites, activate dendritic cells in the lymph nodes. Then, in the evaluation of humoral immunity, LBPPE was able to effectively induce the production of IgG, IgG1, and IgG2a. Moreover, LBPPE significantly enhanced the expression and activation of T lymphocytes, and induced a strong immune memory T cells response. All the results above suggested that LBPPE is likely to provide promising insights toward a safe and efficient adjuvant platform for vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.