Abstract

Context Lycium barbarum L. (Solanaceae) polysaccharides (LBPs) are important active constituents that have demonstrated kidney protection. Objective This study investigated the effect of LBPs on hyperuricaemia and explored the underlying mechanism in mice. Materials and methods Thirty-six C57BL/6 mice were randomly divided into the control group, hyperuricaemia group, allopurinol group (5 mg/kg) and three LBP groups (n = 6). The LBP groups were treated orally with LBPs at 50, 100 and 200 mg/kg body weight for 7 days. We examined the levels of serum uric acid (SUA) and urinary uric acid (UUA), as well as xanthine oxidase (XOD) activities. mRNA and protein were quantified by quantitative real-time PCR and Western blotting, respectively. Results LBPs treatment (100 and 200 mg/kg) significantly reduced the SUA levels to 4.83 and 4.48 mg/dL, and markedly elevated the UUA levels to 4.68 and 5.18 mg/dL (p < 0.05), respectively, while significantly increased the mRNA and protein expression levels of renal organic anti-transporter 1 (OAT1) and organic anti-transporter 3 (OAT3), and markedly decreased the levels of glucose transporter 9 (GLUT9) (p < 0.05). Additionally, the serum XOD activities were reduced to 31.5 and 31.1 mU/mL, and the liver XOD activities were reduced to 80.6 and 75.6 mU/mL after treatment with 100 and 200 mg/kg LBPs (p < 0.01), respectively. Discussion and conclusions This study demonstrated the potential role of LBPs in reducing the uric acid level in hyperuricemic mice. A border study population should be evaluated. These results are valuable for the development of new anti-hyperuricaemia agents from LBPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call