Abstract

Lycium barbarum is used both as a food additive and as a medicinal herb in many countries, and L. barbarum polysaccharides (LBPs), a major cell component, are reported to have a wide range of beneficial effects including neuroprotection, anti-aging and anticancer properties, and immune modulation. The effects of LBPs on neuronal function, neurogenesis, and drug-induced learning and memory deficits have not been assessed. We report the therapeutic effects of LBPs on learning and memory and neurogenesis in scopolamine (SCO)-treated rats. LBPs were administered via gastric perfusion for 2 weeks before the onset of subcutaneous SCO treatment for a further 4 weeks. As expected, SCO impaired performance in novel object and object location recognition tasks, and Morris water maze. However, dual SCO- and LBP-treated rats spent significantly more time exploring the novel object or location in the recognition tasks and had significant shorter escape latency in the water maze. SCO administration led to a decrease in Ki67- or DCX-immunoreactive cells in the dentate gyrus and damage of dendritic development of the new neurons; LBP prevented these SCO-induced reductions in cell proliferation and neuroblast differentiation. LBP also protected SCO-induced loss of neuronal processes in DCX-immunoreactive neurons. Biochemical investigation indicated that LBP decreased the SCO-induced oxidative stress in hippocampus and reversed the ratio Bax/Bcl-2 that exhibited increase after SCO treatment. However, decrease of BDNF and increase of AChE induced by SCO showed no response to LBP administration. These results suggest that LBPs can prevent SCO-induced cognitive and memory deficits and reductions in cell proliferation and neuroblast differentiation. Suppression of oxidative stress and apoptosis may be involved in the above effects of LBPs that may be a promising candidate to restore memory functions and neurogenesis.

Highlights

  • Wolfberry, the fruit of L. barbarum, is produced mainly in Ningxia, China, and L. barbarum have been used as a food additive as well as a medicinal herb in many Asian countries for more than 1000 years [1,2]

  • SCO-treated animals receiving L. barbarum polysaccharides (LBPs) displayed a marked increase in the time exploring the novel versus the familiar objects, and the discrimination index (DI) increased from 51.467.5% to 65.6618.6% (P,0.05, two-tailed t-test, Fig. 2B), similar to the animals in vehicle/saline group (Fig. 2C), indicating near full recovery of novelty discrimination

  • The LBP used in this study were normally extracted with boiling water, followed by precipitating with ethanol, protein hydrolysis, dialysis, and fractionation with a DEAE-Sepharose CL-6B column as previous description [9,42]

Read more

Summary

Introduction

The fruit of L. barbarum, is produced mainly in Ningxia, China, and L. barbarum have been used as a food additive as well as a medicinal herb in many Asian countries for more than 1000 years [1,2]. Studies have suggested that consumption of wolfberry juice may improve the quality of sleep, decrease the level of fatigue and stress [3], and play an important role in preventing and treating various chronic diseases [4,5], and LBPs are thought to be the major ingredients responsible for these biological activities. LBPs are reported to have anti-aging properties in different models [6,7] and can suppress oxidative stress [7,8,9,10,11,12]. In the present study we employed a SCOinduced model of learning and memory impairments to investigate potential anti-amnestic properties of LBPs and their effects on neurogenesis in the brain

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call