Abstract

Abstract This paper depicts the application of symbolically computed Lyapunov–Perron (L–P) transformation to solve linear and nonlinear quasi-periodic systems. The L–P transformation converts a linear quasi-periodic system into a time-invariant one. State augmentation and the method of normal forms are used to compute the L–P transformation analytically. The state augmentation approach converts a linear quasi-periodic system into a nonlinear time-invariant system as the quasi-periodic parametric excitation terms are replaced by “fictitious” states. This nonlinear system can be reduced to a linear system via normal forms in the absence of resonances. In this process, one obtains near identity transformation that contains fictitious states. Once the quasi-periodic terms replace the fictitious states they represent, the near identity transformation is converted to the L–P transformation. The L–P transformation can be used to solve linear quasi-periodic systems with external excitation and nonlinear quasi-periodic systems. Two examples are included in this work, a commutative quasi-periodic system and a non-commutative Mathieu–Hill type quasi-periodic system. The results obtained via the L–P transformation approach match very well with the numerical integration and analytical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.