Abstract

This paper presents a Lyapunov-based design of model-reference adaptive control (MRAC) for multi-input-multi-output (MIMO) systems of uniform relative degree two. It consists of an extension of a well known MRAC Lyapunov-based scheme for single-input-single-output (SISO) plants with relative degree one or two. The case of relative degree one, was completely extended to the MIMO case only recently. The corresponding extension of the relative degree two case remained hitherto unpublished. While MIMO MRAC schemes exist which can deal with arbitrary relative degree, the one presented here has the significant advantage of possessing an explicit Lyapunov function which easily leads to a stability and error convergence proof. It can also be regarded as a passivity-based approach. As a result, it becomes easier to guarantee stability when connecting such adaptive system to other adaptive control systems with similar passivity properties, e.g., in adaptive visual servoing of robot manipulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.