Abstract
Computing upper bounds on exit probabilities—the probability that a system reaches certain bad sets—may assist decision-making in control of stochastic systems. Existing analytical bounds for systems described by stochastic differential equations are quite loose, especially for low-probability events, which limits their applicability in practical situations. In this paper we analyze why existing bounds are loose, and conclude that it is a fundamental issue with the underlying techniques based on martingale inequalities. As an alternative, we give comparison results for stochastic differential equations that via a Lyapunov-like function allow exit probabilities of an n-dimensional system to be upper-bounded by an exit probability of a one-dimensional Ornstein-Uhlenbeck process. Even though no closed-form expression is known for the latter, it depends on three or four parameters and can be a priori tabulated for applications. We extend these ideas to the controlled setting and state a stochastic analogue of control barrier functions. The bounds are illustrated on numerical examples and are shown to be much tighter than those based on martingale inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.