Abstract

Mobile-edge computing (MEC) has been garnering considerable level of interests by processing computation tasks nearby mobile devices (MDs). With limited computation and communication resources and strict task deadline, balancing the energy consumption and time delay of computational tasks will be highly focused. MDs deployed energy harvesting (EH) modules can always provide service to continuous task requests, and finer-grained offloading schemes of the MEC system will significantly affect the time delay of computation tasks. However, when combined them together, the energy causal constraint and the coupling between offloading ratios and resources allocation will cause new challenges for the computation offloading problem. To address these issues, we investigate the partial computation offloading schemes for multiple MDs enabled by harvested energy in MEC. Specifically, we build models for two computing modes and EH process. Subsequently, we formulate a nonconvex optimization problem by minimizing the energy consumption of all the MDs while satisfying the constraint of time delay. Furthermore, we propose and design a novel algorithm based on the Lyapunov optimization to achieve optimal solution, that is, Lyapunov-optimization-based partial computation offloading for multiuser (LOMUCO). Then, we take the long-term average energy consumption and the discarding ratio of computation tasks as the quantitative metrics and conduct extended simulation experiments to confirm the performance of LOMUCO. Finally, compared to several baseline or state-of-the-art algorithms, including local computing all (LCA), offloading computing all (OCA), randomly partial computation offloading (RPCO), and Lyapunov-optimization-based dynamic computation offloading (LODCO), we can demonstrate the superiority of LOMUCO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call