Abstract

Little seems to be known about evaluating the stochastic stability of stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) via stochastic Lyapunov technique. The objective of this paper is to work with stochastic stability criterions for such systems. By defining a new derivative operator and constructing some suitable stochastic Lyapunov function, we establish some sufficient conditions for two types of stability, that is, stability in probability and moment exponential stability of a class of nonlinear SDEs driven by fBm. We will also give an example to illustrate our theory. Specifically, the obtained results open a possible way to stochastic stabilization and destabilization problem associated with nonlinear SDEs driven by fBm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.