Abstract

StabilityStability|( ofStability Autonomous Systems|( nonlinear systems are discussed in this chapter. Lyapunov stability, asymptotic stability, and exponential stability of an equilibrium point of a nonlinear system are defined. The Lyapunov’s direct method is introduced as an indispensable tool for analyzing stability of nonlinear systems. The Barbashin–Krasovskii theorem provides a method for global stability analysis. The LaSalle’s invariant set theorem provides a method for analyzing autonomous systems with invariant sets. Stability of non-autonomous systems involves the concepts of uniform stability, uniform boundedness, and uniform ultimate boundedness. The Barbalat’s lemma is an important mathematical tool for analyzing asymptotic stability of adaptive control systems in connection with the concept of uniform continuity of a real-valued function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.