Abstract
The dynamics of a system consisting of many spherical hard particles can be described as a single point particle moving in a high-dimensional space with fixed hypercylindrical scatterers with specific orientations and positions. In this paper, the similarities in the Lyapunov exponents are investigated between systems of many particles and high-dimensional billiards. The billiards contain cylindrical scatterers which have isotropically distributed orientations and homogeneously distributed positions. The dynamics of the isotropic billiards are calculated using a Monte Carlo simulation, and a reorthogonalization process is used to find the Lyapunov exponents. The results are compared to numerical results for systems of many hard particles as well as the analytical results for the high-dimensional Lorentz gas. The smallest three-quarters of the positive exponents behave more like the exponents of hard-disk systems than the exponents of the Lorentz gas. This similarity shows that the hard-disk systems may be approximated by a spatially homogeneous and isotropic system of scatterers for a calculation of the smaller Lyapunov exponents, apart from the exponent associated with localization. The method of the partial stretching factor is used to calculate these exponents analytically, with results that compare well with simulation results of hard disks and hard spheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.