Abstract

In this paper we study the symmetric coupled algebraic Riccati equations corresponding to the steady state Nash strategies. Under control-oriented assumptions, imposed on the problem matrices, the Lyapunov iterations are constructed such that the proposed algorithm converges to the nonnegative (positive) definite stabilizing solution of the coupled algebraic Riccati equations. In addition, the problem order reduction is achieved since the obtained Lyapunov equations are of the reduced-order and can be solved independently. As a matter of fact a parallel synchronous algorithm is obtained. A high-order numerical example is included in order to demonstrate the efficiency of the proposed algorithm. In the second part of this paper we have proposed an algorithm, in terms of the Lyapunov iterations, for finding the positive semidefinite stabilizing solution of the algebraic Riccati equation of the zero-sum differential games. The similar algebraic Riccati type equations appear in the H ∞ optimal control and related problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call