Abstract
A procedure for constructing the Lyapunov functions and studying their asymptotic Lyapunov stability with probability one for quasi-Hamiltonian systems is proposed. For quasi-non-integrable Hamiltonian systems, the Hamiltonian (the total energy) is taken as the Lyapunov function. For quasi-integrable and quasi-partially-integrable Hamiltonian systems, the optimal linear combination of the independent first integrals in involution is taken as the Lyapunov function. The derivative of the Lyapunov function with respect to time is obtained by using the stochastic averaging method for quasi-Hamiltonian systems. The sufficient condition for the asymptotic Lyapunov stability with probability one of quasi-Hamiltonian systems is determined based on a theorem due to Khasminskii and compared with the corresponding necessary and sufficient condition obtained by using the largest Lyapunov exponent. Three examples are worked out to illustrate the proposed procedure and its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.