Abstract

We investigate additional regularity properties of all globally defined weak solutions, their global and trajectory attractors for classes of semi-linear parabolic differential inclusions with initial data from the natural phase space. The main contributions in this note are: (i) sufficient conditions for the existence of a Lyapunov function for a class of parabolic feedback control problems; (ii) convergence results for all weak solutions in the strongest topologies; and (iii) new structure and regularity properties for global and trajectory attractors. Results applied to the long-time behavior of state functions for the following problems: (a) a model of combustion in porous media; (b) a model of conduction of electrical impulses in nerve axons; and (c) a climate energy balance model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.