Abstract

This paper addresses the Lyapunov functions and sliding mode control design for two degrees-of-freedom (2DOF) and multidegrees-of-freedom (MDOF) fractional oscillators. First, differential equations of motion for 2DOF fractional oscillators are established by adopting the fractional Kelvin–Voigt constitute relation for viscoelastic materials. Second, a Lyapunov function candidate for 2DOF fractional oscillators is suggested, which includes the potential energy stored in fractional derivatives. Third, the differential equations of motion for 2DOF fractional oscillators are transformed into noncommensurate fractional state equations with six dimensions by introducing state variables with physical significance. Sliding mode control design and adaptive sliding mode control design are proposed based on the noncommensurate fractional state equations. Furthermore, the above results are generalized to MDOF fractional oscillators. Finally, numerical simulations are carried out to validate the above control designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.