Abstract

We study global properties of a class of delay differential equations model for virus infections with nonlinear transmissions. Compared with the typical virus infection dynamical model, this model has two important and novel features. To give a more complex and general infection process, a general nonlinear contact rate between target cells and viruses and the removal rate of infected cells are considered, and two constant delays are incorporated into the model, which describe (i) the time needed for a newly infected cell to start producing viruses and (ii) the time needed for a newly produced virus to become infectious (mature), respectively. By the Lyapunov direct method and using the technology of constructing Lyapunov functionals, we establish global asymptotic stability of the infection-free equilibrium and the infected equilibrium. We also discuss the effects of two delays on global dynamical properties by comparing the results with the stability conditions for the model without delays. Further, we ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.