Abstract

Though the Lyapunov function method is more efficient than the largest Lyapunov exponent method in evaluating the stochastic stability of multi-degree-of-freedom (MDOF) systems, the construction of Lyapunov function is a challenging task. In this paper, a specific linear combination of subsystems’ energies is proposed as Lyapunov function for MDOF nonlinear stochastic dynamical systems, and the corresponding sufficient condition for the asymptotic Lyapunov stability with probability one is then determined. The proposed procedure to construct Lyapunov function is illustrated and validated with several representative examples, where the influence of coupled/uncoupled dampings and excitation intensities on stochastic stability is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.