Abstract

We consider smooth (not necessarily invertible) maps of Hilbert spaces preserving ergodic Borel probability measures, and prove the existence of hyperbolic periodic orbits and horseshoes in the absence of zero Lyapunov exponents. These results extend Katok’s work on diffeomorphisms of compact manifolds to infinite dimensions, with potential applications to some classes of periodically forced PDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.