Abstract
The dependence of the Lyapunov exponent on the closeness parameter, ε, in tangent bifurcation systems is investigated. We study and illustrate two averaging procedures for defining Lyapunov exponents in such systems. First, we develop theoretical expressions for an isolated tangency channel in which the Lyapunov exponent is defined on single channel passes. Numerical simulations were done to compare theory to measurement across a range of ε values. Next, as an illustration of defining the Lyapunov exponent on many channel passes, a simulation of the intermittent transition in the logistic map is described. The modified theory for the channels is explained and a simple model for the gate entrance rates is constructed. An important correction due to the discrete nature of the iterative flow is identified and incorporated in an improved model. Realistic fits to the data were made for the Lyapunov exponents from the logistic gate and from the full simulation. A number of additional corrections which could improve the treatment of the gates are identified and briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.