Abstract
Different types of the lattice spin systems with the competing interactions have rich and interesting phase diagrams. In this study a system with competing nearest-neighbor interaction J1, prolonged next-nearest-neighbor interaction Jp and ternary prolonged interaction Jtp is considered on a Cayley tree of arbitrary order k. To perform this study, an iterative scheme is developed for the corresponding Hamiltonian model. At finite temperatures several interesting properties are presented for typical values of α = T/J1, β = −Jp/J1 and γ = -Jtp/J1. This study recovers as particular cases, previous work by Vannimenus1 with γ = 0 for k = 2 and Ganikhodjaev et al.2 in the presence J1, Jp, Jtp with k = 2. The variation of the wavevector q with temperature in the modulated phase and the Lyapunov exponent associated with the trajectory of our iterative system are studied in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.