Abstract

A two-degree-of-freedom vibro-impact system having symmetrical rigid stops and subjected to periodic excitation is investigated in this paper. By introducing local maps between different stages of motion in the whole impact process, the Poincaré map of the system is constructed. Using the Poincaré map and the Gram-Schmidt orthonormalization, a method of calculating the spectrum of Lyapunov exponents of the above vibro-impact system is presented. Then the phase portraits of periodic and chaotic attractors for the system and the corresponding convergence diagrams of the spectrum of Lyapunov exponents are given out through the numerical simulations. To further identify the validity of the aforementioned computation method, the bifurcation diagram of the system with respect to the bifurcation parameter and the corresponding largest Lyapunov exponents are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.