Abstract

In this article, we deal with infinite-dimensional nonlinear forward complete dynamical systems which are subject to uncertainties. We first extend the well-known Datko lemma to the framework of the considered class of systems. Thanks to this generalization, we provide characterizations of the uniform (with respect to uncertainties) local, semi-global, and global exponential stability, through the existence of coercive and non-coercive Lyapunov functionals. The importance of the obtained results is underlined through some applications concerning 1) exponential stability of nonlinear retarded systems with piecewise constant delays, 2) exponential stability preservation under sampling for semilinear control switching systems, and 3) the link between input-to-state stability and exponential stability of semilinear switching systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call