Abstract

In psychology, decision makers are modeled using the Lindbladian equations from quantum mechanics to capture important human-centric features such as order effects and violation of the sure thing principle. We consider human–machine interaction involving a quantum decision maker (human) and a controller (machine). Given a sequence of human decisions over time, how can the controller dynamically provide input messages to adapt these decisions so as to converge to a specific decision? We show via novel stochastic Lyapunov arguments how the Lindbladian dynamics of the quantum decision maker can be controlled to converge to a specific decision asymptotically. Our methodology yields a useful mathematical framework for human-sensor decision making. The stochastic Lyapunov results are also of independent interest as they generalize recent results in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.