Abstract
A successful controller design is crucial for establishing and maintaining an optical link between free-space communication stations engaged in a laser communication session. This task is quite difficult due to nonlinear behavior, cross-coupled dynamics, and time-varying characteristics of all known beam steering technologies. A novel adaptive control technique utilizing Lyapunov function to ensure global asymptotic stability of the system, thus resulting in a highly robust system performance, is developed. The technique applied to a piezo-electric mirror setup results in a highly efficient controller design that does not require prior knowledge of system dynamics, while providing independent access to azimuth and elevation positions of the laser beam. The basic algorithm is presented and the results of its application are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.