Abstract

Recent hydrodynamic simulations of galaxy formation reveal streams of cold (T ~ 1e4 K) gas flowing into the centers of dark matter halos as massive as 1e12-1e13.5 M_sun at redshifts z~1-3. In this paper we show that if > 20% of the gravitational binding energy of the gas is radiated away, then the simulated cold flows are spatially extended Lyman Alpha (Lya) sources with luminosities, Lya line widths, and number densities that are comparable to those of observed Lya blobs. Furthermore, the filamentary structure of the cold flows can explain the wide range of observed Lya blob morphologies. Since the most massive halos form in dense environments, the association of Lya blobs with overdense regions arise naturally. We argue that Lya blobs - even those which are clearly associated with starburst galaxies or quasars - provide direct observational support for the cold accretion mode of galaxies. We discuss various testable predictions of this association.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.