Abstract

We studied the effects and the mechanism of action of the cyclic GMP-lowering substance 6-anilino-5,8-quinolinedione (LY 83583) on cyclic GMP-mediated inhibition of platelet function. The activation of washed human platelets by thrombin was counteracted by 8-bromo-cyclic GMP and the direct activators of soluble guanylate cyclase, sodium nitroprusside and endothelium-derived relaxant factor (EDRF = nitric oxide). LY 83583 significantly antagonized the inhibitory effect of sodium nitroprusside and EDRF, but not that of 8-bromo-cyclic GMP, on thrombin-induced aggregation, ATP-release, adhesion to native endothelial cells and increase in concentration of free intracellular calcium ions. In accordance, increases in intracellular cyclic GMP by sodium nitroprusside and EDRF were attenuated by LY 83583. The inhibition of cyclic GMP-mediated effects on platelets by LY 83583 could be related to inhibition of platelet soluble guanylate cyclase, as the activation of the purified enzyme from platelets by sodium nitroprusside was directly inhibited by LY 83583. This effect of LY 83583 was attenuated in the presence of superoxide dismutase. Our findings support the hypothesis that sodium nitroprusside and EDRF inhibit platelet activation by stimulation of soluble guanylate cyclase via nitric oxide. Consequently, inhibition of nitric oxide-induced cyclic GMP formation by LY 83583, which may act by intracellular generation of superoxide anions, facilitates platelet activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.