Abstract

In this paper the transmutation of light water reactors (LWR) spent fuel is analyzed. The system used for this study is the fusion-fission transmutation system (FFTS). It uses a high energy neutron source produced with deuterium-tritium fusion reactions, located in the center of the system, which is surrounded by a fission region composed of nuclear fuel where the fissions take place. In this study, the fuel of the fission region is obtained from the recycling of LWR spent fuel. The MCNPX Monte Carlo code was used to setup a model of the FFTS. Two fuel types were analyzed for the fissile region: the mixed oxide fuel (MOX), and the inert matrix fuel (IMF). Results show that in the case of the MOX fuel, an important Pu-239 breeding is achieved, which can be interesting from the point of view of maximal uranium utilization. On the contrary, in the case of the IMF fuel, high consumption of Pu-239 and Pu-241 is observed, which can be interesting from the point of view of non-proliferation issues. A combination of MOX and IMF fuels was also studied, which shows that the equilibrium of actinides production and consumption can be achieved. These results demonstrate the versatility of the fusion-fission hybrid systems for the transmutation of LWR spent fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.