Abstract
Properties and examples of continuous-time ARMA (CARMA) processes driven by Levy processes are examined. By allowing Levy processes to replace Brownian motion in the definition of a Gaussian CARMA process, we obtain a much richer class of possibly heavy-tailed continuous-time stationary processes with many potential applications in finance, where such heavy tails are frequently observed in practice. If the Levy process has finite second moments, the correlation structure of the CARMA process is the same as that of a corresponding Gaussian CARMA process. In this paper we make use of the properties of general Levy processes to investigate CARMA processes driven by Levy processes {W(t)} without the restriction to finite second moments. We assume only that W (1) has finite r-th absolute moment for some strictly positive r. The processes so obtained include CARMA processes with marginal symmetric stable distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.